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Effects of spacing on dynamics of two coupled
Bose-Einstein condensates in two finite traps
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Interaction between two coupled Bose-Einstein condensates (BECs) is investigated by the variational ap-
proach in two finite traps, and the effects of the spacing between the two traps on dynamics of the two
BECs are analyzed. The spacing determines the stable condition of stationary states, affects the existence
condition of each BEC, and changes the switching and self-trapping effects on the two BECs. The dynamic
mechanism is demonstrated by performing a coordinate of classical particle moving in an effective potential
field, and confirmed by the evolution of the atom population transferring ratio.
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Bose-Einstein condensates (BECs) offer a unique possi-
bility of studying nonlinear effects using matter waves,
such as the possibility of four wave mixing, the creation
of topological structures, the creation of solitons, as well
as other demonstrations of the super-fluid character[1].
A mean-field description for the macroscopic BEC wave-
function is constructed using the Hartree-Fock approxi-
mation and results in Gross-Pitaevskii equation (GPE)
that supports solitonic solutions. The existence of soli-
tonic solutions is a very general feature of nonlinear wave
equations. Depending on the repulsive or attractive na-
ture of the inter-atomic interactions, the GPE allows for
either dark or bright soliton, respectively[2].

One of the most important aspects of BECs is that they
are unstable against interactions between neighboring
BECs. For example, dynamical instabilities, switching
and trapping characteristics of coupled BECs have been
studied in the framework of almost all nonlinear evolu-
tion equations possessing soliton solutions[3−10]. Soliton
trains consisting of up to ten solitons have been observed
in the experiment, and it is found that the neighboring
solitons repel or attract each other with a force that is
dependent on their spacing. Physically, this can be un-
derstood from the fact that the anti-symmetric nature of
the many-soliton wave function prevents the solitons from
penetrating each other. Recently, a relevant interesting
issue is to learn interaction of different types of conden-
sates, including the coupled BEC solitons in traps. The
question then arises how to affect or even guide their in-
teraction. The motion of the coupled condensates results
in a train of self-coherent solitonic pulses, and becomes
the basis of the pulsed atomic soliton lasers[11].

In this letter, we use a variational approach to inves-
tigate the effects of the spacing on the dynamics of the
coupled BECs, in which we describe the wave-function of
the individual solitons as a Gaussian function, and the
width (number of atoms in each BEC) and phase (the
effective wave-vector) of the Gaussian function can be
varied.

Two coupled BECs in two traps can be described by the

following coupled nonlinear Schrödinger equation[5−8]
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where ui(i = 1, 2) is the condensate wave-function, t the
normalized time, K the linear coupling coefficient aris-
ing out of overlaps of the transverse parts of the wave-
functions, and V (z) the normalized confining potential
of each trap in the longitudinal direction (z direction).

Compared with the temporal dependence, the spatial
dependence is weak, and the two traps behave indepen-
dently with the well-known ground state solution in the
form of Gaussian-shape (quasi-soliton). Then we adopt
trial functions below as the solution to Eq. (1)

ui(z, t) =
Ni

4
√

π
exp[−N2

i

2
(z ± ρ/2)2 + jk(z ± ρ/2) + jφi],

(2)

where ρ is the spacing between the two BECs, k the
effective wave-vector, and φi (i = 1, 2) the local phase.
Ni =

∫ ∞
−∞ |ui|2dz (i = 1, 2) is the number of atoms in

each trap, and N = N1+N2 is the total number of atoms
in the two traps (a conserved quantity). In the evolution
of the two BECs, the wave-function ui (i = 1, 2) retains
the Gaussian-shape given by Eq. (2), the effective wave-
vector and the number of atoms in each trap become
functions of time, but the spacing and the local phase
are slowly varying quantities.

In the present study, the two coupled BECs in two
finite traps are considered, and the potential of the trap
is[12]

V (z) =
{

0 |z| ≤ 1
V0 |z| > 1 , (3)

where V (z) represents the square well potential of finite
trap, and V0 is the amplitude of the potential. This
potential gives analytic solutions, unlike harmonic traps,
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which in one dimension do not give rise to analytic solutions. It has the advantage of having a direct analog in the
linear Schrödinger equation, for which the stationary states have been worked out completely.

The averaged Lagrangian of Eqs. (1) can be defined as usual variational approach
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The equations of motions for the wave-vector and the number of atoms in each trap are obtained from the averaged

Lagrangian by using dL(t)/dσ − d[dL(t)/dσ]/dt = 0 (σ = N1, N2, k), and the two important equations are obtained
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where φ = φ2 − φ1 is the local phase difference between the two BECs. R(t) = (N2 − N1)/N is the atom population
transferring ratio, and N1 = N(1 − R)/2 and N2 = N(1 + R)/2 are used.

According to the equation H =
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Equations (5) and (6) determine the dynamics of the
two coupled BECs.

The stationary states can be obtained by setting the
time derivatives in Eq. (5) to zero. The stationary states
in absence of the potential deviation are

R = 0 (N1 = N2 = N/2),

for k =
(nπ − φ)

ρ
(n = 0,±1,±2, · · · ), (7)

R = ±1 (N1 = 0, or N2 = 0),

for k =
1
ρ
[arccos(

3
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) − φ]. (8)

The stability issue for the stationary states can
be discussed by performing a standard linear stabil-
ity analysis[5]. Small fluctuations around the sta-
tionary solution are introduced, Eq. (5) is linearized.
With respect to small perturbations, we find the pos-
sibly stable state of stationary states is R = 0
for only k = (2nπ − φ)/ρ (n = 0,±1,±2, · · · ).
The stability condition against small perturbation is
[−3aN2 + (6K − 6N2ρ2) exp(−N2ρ2/16)] ≤ 0. The
stable states of stationary states can be realized if
the total number of atoms is larger than [2(K −
N2ρ2) exp(−N2ρ2/16)/a]1/2 or the coupling coefficient
is smaller than [aN2 exp(N2ρ2/16)/2+N2ρ2]. The spac-

ing plays an important role in motion of the two cou-
pled BECs because the interaction strictly depends on
the spacing.

The stationary states corresponding to the disappear-
ance (R = ±1, namely N1 = 0 or N2 = 0) of either
BEC can be seen in Eq. (8), which shows that the disap-
pearance can be avoided if cos(kρ + φ) = 3

√
2aN2

4K > 1.
The disappearance can be realized if the total number
of atoms is larger than [4K/3

√
2a]1/2 or the coupling

coefficient is smaller than [3
√

2aN2/4].
The effect mechanism is demonstrated by performing

a coordinate of classical particle moving in an effective
potential field. Linearizing Eq. (5) in R only, Eq. (5) re-
duces into the very simple form as below
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The effective interaction potential between the two
BECs is given by
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Fig. 1. Effective interaction potential versus the wave-vector.

This suggests a mechanical analogy in which particles
move in the effective interaction potential relating to the
spatial coordinate k. The effective interaction potential
versus the wave-vector is shown in Fig. 1, and the spac-
ings are selected as ρ = 0.10, 0.20, and 0.50. The system
parameters are that the number of the total atoms is
N = 5, the local phase difference is φ = 2π and the
coupling coefficient is K = 1.0. We can see that the
effective potential Veff(k) has some small valleys around
k = 2nπ/ρ (n = 0,±1,±2, · · · ), where the particle can
oscillate, and the effective interaction potential depends
strictly on the spacing. For example, the number of val-
leys becomes few, and the depth of each valley increases
as the spacing becomes small. On the other hand, the
depth of each valley decreases as the spacing becomes
large. The effective interaction potential becomes nearly
zero as the spacing is large enough, and this means that
the interaction of the two BECs disappears. The physical
mechanism implies that the two BECs can be regarded as
the two repellent particles, whose moves may be confined
in the lattices (relating to the spatial coordinate k) of
the effective interaction potential, which may affect the
moving dynamics of the particles. For example, when
the spacing is small, the effective interaction potential is
large, their moves are confined in the lattices due to the
strong interaction. When the spacing becomes large, the
potential becomes small, and their moves are released
partly due to the reduction of the potential. When the
spacing becomes large enough, the potential becomes
very small, and their moves are free from the interac-
tion. These features illuminate that the self-trapping
and switching dynamics of the two coupled BECs are
sensitive to the change of the spacing. For example,
the stationary states can be reset by the change of the
spacing because their effective wave-vectors are given by
k = (2nπ − φ)/ρ (n = 0,±1,±2, · · · ).

To understand the effect of the spacing on the switch-
ing and self-trapping as well as the dynamics of the two
BECs, we can investigate the atom population transfer
between the two BECs as the time changes. In Fig.
2, the atom population transferring ratio versus time
is plotted by numerically solving Eq. (5) with a fourth
order variable-step Runge-Kutta algorithm. The given
conditions are the same as those in Fig. 1, and the initial
population transferring ratio is R = 0.5. The selected
spacings are given by ρ = 0.10, 0.20, and 0.50. As seen
clearly in the figure, the spacing plays an important role
in the evolution of the population transferring ratio. For

Fig. 2. Atom population transferring ratio versus time.

example, the transferring ratio nearly periodically oscil-
lates around R = 0 in different amplitudes because of
the different spacings, and the oscillation period becomes
long as the spacing is large. Disappearance of either BEC
does not take place as time changes, and the reason is
that the avoidance condition of disappearance is satisfied.
If there is small spacing (ρ = 0.10), the transferring ra-
tio oscillates in periodical manner with large amplitude,
and the atom population transferring procedures are of
near-zero average population imbalance. If there is the
spacing of ρ = 0.20, the transferring ratio oscillates in
small amplitude, and the population transferring proce-
dures are of zero average population imbalance. If there
is the large spacing of ρ = 0.50, the transferring ratio os-
cillates in very small amplitude because of the very large
spacing and the weak interaction, and the oscillation pe-
riod becomes very long.

In summary, the interaction between the two coupled
BECs are investigated by the variational approach in two
finite potentials, and the effects of the spacing between
the two traps on dynamics of the two coupled BECs are
analyzed. It is shown that the spacing determines the
stable condition of the stationary states, affects the ex-
istence condition of each BEC, and changes the switch-
ing and self-trapping effect on the two coupled BECs.
The dynamic mechanism is demonstrated by performing
a coordinate of classical particle moving in an effective
interaction potential, and confirmed by the evolution of
the atom population transferring ratio versus time. For
example, the atom population transfer between the two
BECs depends strictly on the spacing. When the spacing
is small, the atom population transferring ratio period-
ically oscillates in large amplitude, and the interaction
between the two BECs is working. When the spacing
becomes large, the atom population transferring ratio
periodically oscillates in very small amplitude, and the
interaction dies down. These results remind that the be-
haviors of the two BECs would be sensitive to the change
of the spacing, and the interaction related to the spacing
is one of the most important aspects of the pulsed atomic
soliton lasers.
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